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ABSTRACT

The technology of using glass fibers to carry signals impressed on light

beams has grown exponentially over the past decade owing to the many

advantages of this transmission medium. These include small size, low weight,

high bandwidth and immunity to electromagnetic interference. Applications

already realized range from telephone and television subscriber loops to data

acquisition for nuclear weapons tests.

We have developed a very complete theoretical model of light propagation

in optical fibers, which treats the total transmitted beam rather than

. individual rrndes of the system. The mdel allows us to study important

aspects of light propagation in realistic fibers: spatial and angular

confinement of the transmitted light, power losses due to absorbing jackets.
%’

and splices, and bandwidth restrictions that result because the individual
.,
. males propagate energy with differing group velocities. In addition, we can>

retrieve a complete modal description of the light, i.e., find all the mode

shapes and their corresponding wavenumbers.

the ausc)ices of the U.S. De~artment of*This work was performed under
Energy by Lawrence Livermore Laboratory under contract No.”W-7405-Eng-48.
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This model allows us to treat fibers with arbitrary refractive index

profiles, with finite core and cladding regions, and with Iossy components.

It also serves as a check on more approximate theoretical methods. Excellent

agreemnt with experimental results gives us confidence in the applicability

of the model to real situations.
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It is common knowledge today that telephone signals are being carried

light over hair-thin glass fibers. The growth of this technology, only a
●

.’
. decade old, has been explosive. The Bell System is installing a 980-km f“

;.. optic trunk line along the nation’s busiest communication route (between

Boston and Washington, D.C.). Fibers are also being used to bring cable

television to remote areas of Canada; to bring television, computer, and

information services to homes in Japan; and to provide

and battlefield corcinunicationlinks for the military.

system is an approximately 10,000-km network that will

by

ber-

other

airborne, shipborne,

The largest planned

serve as the nervous

system of the vast MX missile complex. At Lawrence Livermore National

Laboratory, optical fibers are being used to carry data from Shiva laser

fusion experiments and from nuclear experiments at the Nevada Test Site.

The idea of using light for communication is not new. A century ago,

Alexander Graham Bell invented the photophone, a device that used modulated

light beams to convey voice signals. Unfortunately, it and other similar

devices were far from practical. With the invention of the laser in 1960,

interest in light-wave communication was renewed.

The maximum potential information-carrying capacity (bandwidth) of a.

,, transmission channel is a function of the frequency of the signal, and since

.
the frequency of light waves is 1,000 to 10,000 times that of microwaves, the

. .
,. potential capacity is very great. In the past, the difficulty has been the

., absence of an adequate medium for the light to travel in. The atmosphere is.
●

unsatisfactory because, even under the best of weather conditions, light beams

spread and distort and are absorbed in it. It was only with,the development

of extremely pure (transparent) glass fibers (in 1970) that optical

communication over long distances became a practical possibility.
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Fibers have been improved greatly in 10 years. Early ones had an

attenuation of about 20 dB/km; today’s have transmission losses as low as a
● .
●

. fraction of 1 dB/km. The lower the attenuation, the longer a fiber link can

.

. . be and still transmit a detectable signal. Low attenuation is necessary to

minimize the need for costly signal regenerators (repeaters).

Another limit on link length is dispersion, i.e., the tendency of short

optical pulses to spread (in time) in proportion to the distance traveled.

The information capacity of the link is reached when

overlap and can no longer be distinguished.

Optical fibers consist of a circular core region

cladding (Fig. 1). Most of the transmitted light is

however, some penetrates the cladding, which acts as

the pulses begin to

surrounded by an outer

carried by the core;

a buffer between the core

and outside environment. In the earliest fibers (called step fibers), the

core’s refractive index was constant and slightly larger than that of the

. .
c

.
.

cladding. It was later realized that,maximum bandwidth (inf(

would be achieved by grading the refractive index from a max

to the cladding value at the core--cladding interface. This

rmation capacity)

mum at the center

can be thought of

as providing a situation in which light rays that travel nearly straight down

the fiber have a short path length and a high refractive index (low velocity),

while those that bounce back and forth across the core have a longer path

length and a lower ,averagerefractive index (higher velocity). Thus, all rays

tend to arrive at the output end at nearly the same time. Fibers built on

this principle are called graded-index fibers. A typical graded-index fiber

might have a core diameter of 60 Mm, a cladding diameter of 120 Pm, and a

maximum refractive-index difference between core and cladding of about 1 .

Another useful parameter of the fiber is its numerical aperture, which is a
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measure of the maximum angle a light ray can make with the axis and still

remain trapped in the core. The numerical aperture is typically about 7°.

The use of optical fibers has grown rapidly because of their technical and

economic advantages. They are lightweight, small, capable of high data rates,

and immune to electromagnetic interference. At present, optical-fiber cables

cost about the same as the highest bandwidth coaxial (copper) cables, but the

price of copper is increasing much faster than that of glass. One motivation

behind early teleconmwnication applications was the lack of space in cities

and buildings for more bulky coaxial cables. Optical fibers are appealing for

military applications because of their low weight and imperviousness to

electromagnetic interference. At Lawrence Livermore National Laboratory,

fiber links are used to transmit test and diagnostic data in electro

magnetically noisy environments.

THE PROPAGATING-BEAM METHOD

In any waveguide structure, the propagated light can be resolved into

.

a

number of normal modes.

without changing shape.

rate, i.e., has a unique

field (a coherent sum of
. .

Each mode propagates independently of the others

However, each mode changes its phase at a unique

propagation constant (wavenumber) so that the total

the males) is constantly changing shape. If one

-’ knows the mode shapes and the corresponding propagation constants, the field

at a given position along the fiber can be extrapolated to any distance merely
●

.
by advancing the phase of each modal term in the sum by the appropriate

amunt. There are two types of modes: trapped (or guided) modes, whose power

is confined principally to the core, and radiation modes that carry power away

from the core. In real fibers, the latter are always lost by being absorbed
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in the cladding or surrounding jacket and are of little importance in a

.
,. ‘

L
.“

. .
.

discussion of propagation over long distances. In what follows, mode will

mean guided mode only. The propagation constant dividing guided from

-1
radiation rmdes is called cutoff, and occurs at O cm in our units.

On our spectral plots, guided modes have negative wavenumbers. Tightly

bound nmdes, whose power is carried almost exclusively in the core, appear

with large negative wavenumbers.

significantly into the cladding,

The vast majority of theoret”

Loosely bound modes, which extend

have wavenumbers closer to zero.

cal determinations of modal wavenumber have

been based on geometric optics, principally the Wentzel-Kramr-Br illouin (WKB)

approximation, which neglects the wave nature of light. Actually, the light

propagation is governed by a wave equation analogous to the Schroedinger

equation of quantum mechanics. In this analo~, the WKB method is equivalent

to the Bohr-Somnerfeld old quantum theory: it is exact for a small class of

potentials (refractive index profiles), but only approximate for most.

Over the past few years, we have developed a very accurate and complete

wave optics description of light propagation in fibers based on a numerical

solution of the wave equation. This propagating-beam method differs from past

approaches in that it considers the propagated beam (made up of many modes)

rather than the individual modes themselves. The individual modes and modal

wavenumbers, however, are recovered,

field.

We can examine the basic idea of

a posteriori, by Fourier transforming the

the method by analogy to a mechanical

systern. Suppose one wanted to find the normal modes of a mechanical system,

e.g., point masses connected by springs. The standard technique is to

calculate the so-called dynamic matrix, which connects the force on each mass
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with all the displacements in the system. One then has to diagonalize this

matrix. The eigenvalues of the matrix yield the normal frequencies, and the>
.

eigenvectors of the matrix are the normal modes. If there are many particles,

t. diagonalizing the matrix may be difficult. Instead, suppose we solve the

.

equations of motion starting from some arbitrary initial condition. This

leads to the vector displacement as a function of time; this displacement is a

coherent sum of modal terms. The key is that each modal term in the sum has

harmonic time dependence, i.e., has a definite frequency. Thus, if we Fourier

transform the displacement with respect to time, the corresponding spectrum

will have distinct spectral lines at the normal frequencies. In the spectral

domain, the various modal contributions are separated and the positions of the

spectral lines give the normal frequencies. Actually, it is advantageous to

form a correlation function between the initial displacement and that at later

times. The transform of this function again determines the modal frequencies,

with the added advantage that the height of each peak is proportional to the

power carried by that nmde. .

This is essentially the mthod by which we find the nmdes of the fiber.

Time in the mechanical system is replaced by propagation distance (z), mode

frequency by mde wavenumber, and Newton’s equations of motion by the wave

equation. We solve the wave equation for the field as a function of z and

form the field correlation function between the initial and propagated

fields. The transform of this function is a power spectrum consisting of

spectral lines whose positions determine the nmdal propagation constants and

whose heights determine the power in each mode. For a circularly symmetric

refractive index profile, the nodes can be classified with two indices. The

first is an angular index V, which measures the phase change (in units of 2Tr)



encountered in traversing a circle around the origin. The second is a radial

index ~ that

Examples

graded-index

counts the number of zeroes in the modal intensity along a radius.

of power spectra are shown in Fig. 2, corresponding to the

power-law (exponent a = 1.85) fiber discusssd in the section on

dispersion below. For each of these spectra, the angular mode index v

(corresponding to the angular momentum quantum number) is held fixed; the

peaks correspond to different values of the radial mode index u. The modal

wavenumbers may be found quite accurately by fitting the numerically computed

spectrum to a modal sum of the proper form. Once one knows the modal

wavenumbers, the wavefunctions are recovered by Fourier transforming the

transmitted field with respect to z at these wavenumbers, thus projecting out

the individual mdal contributions.2

If one wishes to determine the dispersive properties of the fiber, a

second correlation function involving the frequency derivative of the

transmitted field is required. Analyzing the second correlation function in a

way similar to that used for the first gives us the individual group

velocities.

The mthod has been extensively checked for accuracy by comparison with

analytic solutions where ~hey exist. One such case is that of a refractive

index that varies as the square of distance from the optic axis and has

.“ infinite extent. In the quantum mechanical analogy, this is a harmonic

oscillator. The nndal propagation Constants, group velocities, and.
.

wavefunctions were calculated and all showed excellent agreement with analytic

results. In Fig. 3 are shown two comparisons of computed and analytic

wavefunctions. Note the excellent agreement, even at high values of the

radial, and angular mode indices w and v. Such results give confidence in
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applying the method to realistic situations for which no analytic solutions

are available, and for which other theoretical approaches are difficult to

apply or of unknown accuracy.

The remainder of this article briefly describes applications of the method

to some problems of practical interest: dispersion, fibers with lossy

components, and the effect of splices.

DISPERSION IN REALISTIC FIBERS

An outstanding feature of optical fibers is their high bandwidth, i.e.,

ability to transmit information at high rates. For fibers that support many

guided nmdes, the major limitation on this rate is the “intermodal dispersion”

due to modes traveling along the fiber with different velocities. Thus, even

if all nndes start out together at the input end of the fiber, they arrive at

different times at the output end. The amount of pulse spreading (in time) is

proportional to the length of the fiber, and depends on the fiber’s intrinsic

properties as well as on the specific illumination used.

We were particularly interested in studying the effects of realistic fiber

index profiles. Theory indicates that power-law profiles with the exponent a

in the range of 2 constitute a favorable class, and most graded-index fibers

are, in fact, manufactured at such a square law index. Unfortunately, the

method by which mst fibers are manufactured leads to a deficit of the

index-increasing dopant at the center so that the resultant index is

approximately a power law with a dip in the center. We completely

characterized dispersion in a typical refractive index profile with and

3
without the central dip. The two profiles are shown in Fig. 4. To avoid

exciting nearly degenerate modes (i.e., different modes of nearly equal
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wavenumber, which would be difficult to distinguish in the spectrum), it was

necessary to use initial fields with definite angular symnetry properties.

In this way, with several runs , we found 85 distinct modes in the a = 1.85

profile, and 84 for the fiber with dip (one of the previously trapped modes is

no longer so). Modal wavenumbers and group delays (the inverse of the group

velocity) of the two fibers were calculated. The results are shown in Fig.

5. The main effect of the dip is to break the degeneracy that previously

existed for deeply bound modes. That is, single dots in the upper graph,

which are actually superpositions of many states with nearly the same

wavenumber and group delay, have now been split. The perturbation is greatest

for the small-v modes. These modes have the highest power at the center and,

therefore, sample the dip to the

Assuming equal pwer in each

frequency response of each fiber

bandwidths of about 0.5 GHz-km.

this case because the underlying

greatest extent.

guided mode, the impulse response and

was calculated. Both fibers had 3-dB

The dip has little effect on bandwidth in

profile is far from optimal. That is, at the

wavelength at which the calculations were carried out (1 urn),the a = 1.85

index profile does not yield the

profile. This would occur for a

highest possible bandwidth for a power law

closer to 2, and, in this case, the dip would

be a nmre serious defect.4 On the other hand, the rms temporal pulsewidth
,.

increases considerably for the fiber with a dip, pointing out the inadequacy

.J of the pulsewidth as an indicator of bandwidth. The effect is due to a few
●

modes arriving considerably before the main pulse, but containing on

fraction of the total power. Thus, one cannot use rms and bandwidth

of dispersion interchangeably.

y a smal

measures
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Such calculations give a very complete picture of the propagation and

* dispersion properties of realistic index profiles.

,
LOSSY CLADDINGS AND JACKETS

The theory of optical fibers has been

ideal Iossless waveguides. Although real

materials with extremely small absorption

concerned mainly with propagation in

fibers are composed of core

coefficients, they may have

claddings ’with substantially higher losses. In addition, the fiber is usually

surrounded by a plastic jacket of still higher absorption. While spatially

homogeneous losses may be accounted for a posteriori, this is not true of

spatially inhormgeneous losses. The reason is that each mode, according to

its own power distribution, samples the absorptive components to a different

extent. Thus, each mode has its own loss coefficient. In particular, modes

that penetrate deeply into the cladding may be so 10SSY that they are

effectively remved whenever propagation over significant distances is

considered. This is important since such modes, near cutoff (zero wavenumber

in Fig. 5), have significantly reduced group delay times. Their elimination

then can affect both the mode distribution and the fiber bandwidth.

An advantage of the propagating-beam method is that is is just as easy to

treat the case of differential mode attenuation at it is to treat the Iossless
. .

case. All that is required is a generalization of the method of fitting the

power spectrum to find the mode wavenumbers. The generalization is to allow*“

the mde wavenumber to be a complex number. The real part of the eigenvalue

gives the rate at which the phase advances, as before. The imaginary part of

the eigenvalue is just the amplitude attenuation coefficient. Actually,

there is an independent way of calculating attenuation. Since the
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propagating-beam method allows us to find the mode functions (with the

.’,

.’

absorbers present), one can calculate the nmde power-weighted average of

absorption coefficient. In our calculation, we have used both methods.

We studied the effects of both absorbing claddings and highly absorb
c

the

ng

jackets.” In the former case, it was found that the mode attenuation scaled

nearly linearly with the strength of the cladding absorption coefficient.

This indicates that the mde eigenfunctions are on-

presence of the 10SSY cladding. Thus, one could f

estimate of the nmdal losses by using perturbation

y slightly affected by the

nd a reasonably accurate

theory, i.e., by taking the

power-weighted losses, with the eigenfunctions corresponding

case.

The situation is quite different in the case of strongly

to the lossless

absorbing

jackets. The reason is that the absorption is so strong that it tends to

exclude the eigenfunction from the jacket region. This exclusion, similar to

the self-shielding effect in nuclear physics, becomes stronger as the jacket

absorption coefficient becomes

absorber becomes stronger, the

decreases. The application of

higher. This means that, as the jacket

attenuation of affected modes actually

perturbation theory, in this case, leads to a

severe overestimate of the modal attenuation, but the attenuation is high in

any case for nmdes very near cutoff.

An example of this exclusion effect is shown in Fig. 6, in which, for a

mode near cutoff, the logarithm of the modal intensity is plotted vs distance

from the center of a slab waveguide. (A slab waveguide is one in which the

refractive index varies in only one direction across the slab.) The two

arrows indicate the core cladding interface and the cladding–jacket interface,

respectively. The four curves correspond to four values of the jacket
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absorptivity, varying from O to 300 cm-l. Note that in the core and most of

the cladding, the wavefunction is hardly affected by the jacket. Also note

the exponential decay of the wavefunction in the cladding. When the jacket

absorber is turned on, the decay rate in the jacket, where all the absorption

takes place, is greatly increased. The effect is very much less on nnre

tightly bound modes. Indeed, since jackets are so highly lossy and so far

away from the core, the effect on a given rmde is either to attenuate it

strongly or scarcely affect it at all. The loss of modes near cutoff due to

an absorbing jacket probably explains why many real fibers exhibit a higher

bandwidth than that predicted

\ differential losses.

These results show the ab

by theoretical models that do not account for

lity of the propagating beam method to compute

guided mode-attenuation coefficients. They indicate that theoretical analyses

of modes near cutoff may not be maningful unless the details of the fiber’s

finite core, finite cladding, and packaging are taken

EFFECT OF SPLICES

Another practical factor to cons

into account.

der in optical-f ber performance is the

effect of splices. A fiber system will contain splices between either

identical or different fibers. These splices are important for two reasons.

First, today’s fibers have such low intrinsic losses that a significant part

of the total system losses may be due to connections. Secondly, there is

generally some redistribution of power between the modes at a connection, and

this can affect the bandwidth of the link.

We have investigated the losses and mode redistribution due to joints in

which there are spatial and/or angular misalignments and those due to gaps
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?

between the two fibers joined. The calculations refer to joints between

identical fibers, and were carried out for a parabolic graded-index fiber

excited with a spatially incoherent source that overfilled the numerical

aperture of the fiber. That is, the initial incoherent source field contains

light rays at larger angles with the axis that the fiber will propagate. This

excess power is eventually radiated away from the core.

propagated until the radiation modes were eliminated by

The splice was made at this point. A spatial offset is

the optical field with respect to the refractive index.

The field was

an absorbing jacket.

modeled by translating

An angular

misalignment, or tilt, is nndeled by tilting the phase front on the field so

that it is initially propagating at an angle to the optic axis. Of course, a

gap can be treated directly by propagating through a short section with

constant refractive index.

It turns out that gaps are not very serious, i.e., the resultant losses

are small for reasonable values. On the other hand, losses due to spatial and

angular misalignments can be significant. We found that a series of

calculations treating offsets up to half the core

the numerical aperture (or both) led to losses in

geometric optics argument. This geometric optics

radius or tilts up to half

fair agreement with a simple

formula can then be used to

easily estimate losses expected from given conditions.

By forming the field correlation functions both before and after the

splice, the change in mde distribution can be determined. For example, in

Fig. 7, we shw modal power spectra before and after the splice. The figure

refers again to the parabolic graded index, this time being excited with a

coherent, narrow Gaussian beam. Before the splice, only a few low-order modes

are excited. Indeed since the initial field is axially symnetric, only the
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circularly symmetric or meridional modes are excited. With a splice

$ displacement s equal to 15.7% of the core radius a, we see both a shift to

higher modes and the excitation of modes between the original modes. These
*“.

latter modes were originally forbidden by symmetry. With a still larger

offset, the mode distribution is shifted farther and spread out still more.

. .

The change in rmde distr:

case of incoherent illum”

incoherent illumination,

distribution to the left

bution is nuch nnre dramatic in this case than in the

nation, where all modes are initially excited. For

the splice tends to shift the center of the

because h

in mode distribution as extreme as

the bandwidth of the link.

gher-order modes tend to be lost. Changes

these shmn in Fig. 7 significantly affect

(

Such calculations help to determine practical tolerances needed for

minimal power loss at connectors. They also aid in understanding the changes

in rmde distribution that take place.

SUMMARY

We have developed a very complete theoretical description of light

propagation in optical fibers. Called the propagating-beam method, this

technique allows the determination of all bound modes as well as of

corresponding wavenumbers and group delays. The model takes into account the

wave nature of light, realistic fiber-index profiles, and arbitrary

illumination. Because it is just as easy to treat the case of differential

mde attenuation

as the effect of

propagating-beam

as it is to treat the lossless case, practical problems such

absorbing jackets and splices have been addressed. With the

nethod, we have found that:
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. Both the finiteness of the core and deviations from a power-law profile

are significant in determining the fiber’s propagation properties and

information-carrying capacity.
*

. The rms pulsewidth can be a poor indicator of fiber bandwidth.

. Modes very near cutoff tend to be strongly attenuated by an absorbing

jacket.

● Small gaps between fibers do not contribute significantly to splice

1osses.

● Spatial and angular misalignments of splices lead to significant losses.

This article has described the

propagating beam method. There is

development and application of the

now a vast research literature of fiber

optics. In reference 6 are given several sources of broad introductions to

all aspects of fiber use and entry into this literature.

DISCLAIMER.*

.
.

*
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the United States Government. Neither the (hrited States Government nor the

University of(’alifomia nssrssnyof their employees. makes any warranty. ex-

press or implied, or awumes any legal liability or responsibility for the ac-

curacy. completeness, orusefulne=of any information. apparatus, product. or
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by trade name, trademark, manufacturer. or otherwi~. does not nec~~rilY
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authors expres..ed berein do not necessarily state orrefh?et those of the United

States Government thereof, and shall not be used for advertising or product en-

dorsement purposes.
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In the prvpagating-

00
beam method the

waue equation fs safued jor the
pmpagatedjefd. A com-elationjtmc-
tion is formed between the
propagated and initial jiefds. The
Fourier tmnsjorm, with respect to
ptvpagation distance z, oj the
correlation junction is a power spec-
trum consisting oj distinct “lines”
whose posftfon identifies the
conqxmding modal wauenumber.
The spectra shown hem are taken
jrom the power-law fndtzx profile
discussed fn the section on dfsper-
sfon. In onkr to avofd excftfng
modes that are nearfy degenerate,
we pfck an fnftial fiefd ojfied
angular symmetry. In thfs way, with
a number oj runs, the entire rnodaf
spectrum is mapped out. The
mode index v rejers to angular sym-
metry; in the quantum mechanical
analogy it is the angular momen-
tum quantum number. Tmpped
modes have negative wavenumbem.
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77se agreement fir umv@m&”ons, wavenumbem, and group
velocities is excellent and gives us con$dence in the method
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F@o 4 7heoy indkates
that high bandwidth

can be obtafnedfor +xtiue index
prt$les that txsy as a power o~dk-
tonce Jivm the -“s with the ~
nent near 2. Because of the method
of manufacture, howeoer, malj?bem
genemlly s~erfim a deficit oj the
index-misfng dopant on w“%
leading to a dip in the Index profile.
We compared the propagation and
d@er3ion properties of two prqjlles
identical except for the presence oj
a narrow dip hi the second one. I%e
boslc shape oj the index pmj?le fs a
power law with an aqxment OJ 1.85.
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Fflgo5 7%etmnsmittedfield in thejlber consists oja stmight line is the relationship between umvenumber and
supetpo~”tion oj modes, each of which group delay expectedjx the a = 1.85 profile ~ it were of in-

propagates wkh its own wavenumber withaut changing jlnite extent h both cases, modes near zero wavenumber
shape. lntermodal dfspemion arises because each mode also (i.e. modes that extend into the cladding) am significantly
has a unique gtvup velocity. This-figure displays the periurfwd by thejlniteness of the core. in addition, the dip in

calculated gruup delay (fnveme of the group velocity) the latter case remaves the degeneracy which previously

characteristics for the two fndexprujiles shown in Fig. 3. The held for deeply bound modes.
i
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IF@. 6
A strongly absoding jacket modijes the
modal eige@n&”ons in the jacket region.

The jlgure shows the last bound mode of a sfab
waueguide whose +active index txn-ies as the 1.85
power of position. The arrows mark the core-cladding
and cladding-jacket inte~aces, respecthdy. Without an
absorbing jacket (upper curue), the wauefinction decays
qonentially thtvughout the cladding and jacket
reg”ons. With a jacket, the junction decays jaster in the
jacket region. The wavejunction ispmgmssiuely excluded
fim the jacket rqion as the strvngth oJthe jacket absor-
ber is increasedfim 30 cm-’ to 300 cm-].
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IF@. 7
When twa identical jlbem am spficed
together, modal redistribution takes place

unfess they am pe~ectly aligned. The Jlgum rt#em
to a circularly symmetric fiber whose rejmctiue Index
uaries as the squarw oj the radius. The fiber was excfted
with u collimated Gaussian beam so anly a @ Iow-onfer
circulady symmeti”c modes were excited. 7he upper part
of the figure shows the initial mode distribution. For
splices with successively IaWer displacementss between
cente~ two eflkcts occur. %sL modes of all symme~”es
are excited, and secondly, the ovemge wauenumber of
excited modes increased. This redistibufi”on can have an
important eflect on [ass and bandwidth.
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